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EXPLICIT CANONICAL METHODS 
FOR HAMILTONIAN SYSTEMS 

DANIEL OKUNBOR AND ROBERT D. SKEEL 

ABSTRACT. We consider canonical partitioned Runge-Kutta methods for sep- 
arable Hamiltonians H = T(p) + V(q) and canonical Runge-Kutta-Nystrom 
methods for Hamiltonians of the form H = I pTM. 4p + V(q) with M a diag- 
onal matrix. We show that for explicit methods there is great simplification in 
their structure. Canonical methods of orders one through four are constructed. 
Numerical experiments indicate the suitability of canonical numerical schemes 
for long-time integrations. 

1. INTRODUCTION 

Time-independent Hamiltonian systems are of the form 

(1) ~~~d OH d OHS 
(1) dtqi= a~~pi (q,p), TtPi=-Oqi(q 

where p, q E RN and the Hamiltonian function H is a continuously differen- 
tiable function of the generalized coordinates q and the generalized momenta 
p . The 2N-dimensional space with coordinates q1, q2, ... *, qN, P1, P2,***, 
PN is the phase space of the system. Let z = ( ). A transformation z - is 
said to be canonical if (87)TJ(87) = J. where J=( 0). 

The phase flow of (1), 

Gt q () ) q((t)) 

is a one-parameter group of transformations of phase space. The transformation 
Gt is canonical and by Liouville's theorem preserves volume in phase space, an 
important property of (1). The same is true of all canonical transformations. 
In terms of differential forms, the flow preserves the differential 2-form co = 
E dq' A dpi (that is, the sum of areas of projections of any two-dimensional 
surface S in phase space onto the qi-pi planes), and all powers of co, whose 
integrals are the Poincar6 invariants [1, 6]. In numerically solving (1), it may 
be important for the numerical integrators to be canonical so that, in particular, 
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volume in phase space is preserved. This requirement was first considered by 
DeVogelaere (cf. [3]) and in a published paper by Ruth [11]. For information 
about the history of canonical numerical integrators, see [3] and its references. 

A separable Hamiltonian has the form H(q, p) = T(p) + V(q), where T(p) 
and V(q) are kinetic and potential energies, respectively. In this paper, we 
consider the case where T(p) = IpTM- 1p with M a diagonal matrix, and the 
resulting Hamiltonian system 

(2) q=M-1p, P=_0 

is one describing the motion of N particles. Examples of (2) abound in molec- 3 
ular dynamics, astronomy, etc. 

The system (2) can be written as a second-order system thus: 

(3) 

e 

= 

xMa1mieV 

- 

Mf(q). Suris [14] examined Runge-Kutta-Nystrom (RKN) methods for (3) and ob- 
tained, using matrix algebra, the conditions for it to be canonical. 

In our earlier paper [9], we obtained the same conditions using exterior forms. 
Furthermore, we showed that an explicit RKN method is canonical if and only 
if its adjoint is explicit. This paper builds on that work by using it to construct 
explicit schemes for (2). Section 2 gives a brief description of existing results for 
canonical Runge-Kutta-Nystrom methods and shows that for explicit methods 
there is great simplification in their structure. Section 3 details the construction 
of methods of orders one through four. Section 4 reviews partitioned Runge- 
Kutta (pRK) methods for separable Hamiltonians proposed by Sanz-Serna [12] 
and shows again the simplification that occurs for explicit methods. Section 5 
considers numerical illustrations. 

2. CANONICAL RUNGE-KUTTA-NYSTROM METHODS 

We associate with any given (one-step) method a mapping 

(4) V z, hH(pq) zn+,, 

where h is the time step. This gives a transformation of z from time t, to 
t,+I. A method is said to be canonical if 1 = FDh is a canonical mapping 
for any Hamiltonian H and stepsize h. The method is of order p if FDh 
differs from the phase flow Gh by O(hP+1) . It is becoming increasingly evident 
through numerical experiments [3, 12] that the dynamics of canonical FDh and 
Gh are closely related in long-time integrations. For details of the advantages 
of canonical FDh over classical (noncanonical) methods, see [12]. In writing a 
method in the form (4), different methods may yield the same mapping 'Dh We 
shall identify a method with its FDh and the details of its internal stages. Since 
different methods may give the same mapping FhD, it is essential to introduce the 
concepts of equivalence and redundancy. Two methods are said to be equivalent 
if their corresponding mappings FDh are identical. A method may be equivalent 
to a method of a lesser stage number. In this case, the method is regarded as 
redundant. 
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An s-stage Runge-Kutta-Nystrom method for (3) is given by 

S 

yi = qn +cih4n +h2'Eaijf(y1), i = 1, 2 ...,s, 
j=1 

S 

(5) qn+l = qn +hcn +h2 bif(yi), 
i=l1 

S 

Jn+I = 4n +h Bif(yi) 
i=l 

Naturally, we define zn~ = ( ) . The corresponding tableau [2, 8] is: 

C1 al1 a12 ... als 

C2 a2l a22 ... a2s 

cS as1 as2 ... ass 

b1 b2 ... b 

B1 B2 ... Bs 

If we interchange zn and h with zn+l and -h, respectively, in (4), we get 
the adjoint method [8]. Following are the coefficients of the adjoint method of 
(5): 

i = 1 -Cs+-i 

aij = Bs+5-j - bs+j- cs+,-iBs+1-j + as+1-i,s+11, 

(6) ~~bj = Bs+,-j - bs+1_-j i < i, j s, 

Bj = Bs+,-j 

A method is time-reversible if ej = ci, aij = aij, bi = bi, and Bi = Bi. We 
now give the conditions for an RKN method to be canonical, which are found 
in [9, 14]. 

Theorem 1 (Suris [14]). An s-stage RKN is canonical if and only if 

(7a) bi-Bi+cB,=O, 1< i<s 
(7b) -Bjaji + Biaij + Bjbi - Bjbj = O, I < i < j < s. 

An RKN method is explicit if aij = 0 for j > i. For an explicit RKN 
method, equation (7b) reduces to 

(8) Biaij +Bjbi -Bjbj = O, j < i. 
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From equations (7a) and (8), we get 

(9a) bi = Bi(1 - ci) 
(9b) Biaij = BiBj(ci - cj), j < i. 

We would like to conclude from the second of these two that aij = Bj(ci - cj), 
but that would not be quite correct. What can be proved is that the method is 
equivalent to one with this choice for aij. 

Lemma 1. An explicit canonical (r + 1)-stage RKN method (5) is equivalent to 

i-i 

Yi = qn + cihdn + h2 E ai f (yj), i = I1, 2,j*., r 
j=1 

r 

Yr+1 = qn + cr+lhqn + h2E Bj(cr+I - C) f(Yi), 
j=1 

(10) r+1 
qn+l = qn + h4n + h2 Bi(I -ci)f(yi) , 

i=l 

r+l 
4n+1 = 4,n + hBif(yi). 

i=l 

Proof. It is enough to show that 

r 

Br+lf (qn + cr+lhqn + h2 E Bj (cr+i -c) f (y) 
j=1 

r 

Br+lf qn + cr+lhn + h2 jar+l,jf(Yi) 
j=1 

From (9b), 

either Br+i = 0 or ar+1 ,; = Bj(cr+i - cj), 1< r + 1, 

and the result follows. O 

Theorem 2. An explicit canonical RKN method is equivalent to 

i-l 

Yi = qn + cihqn + h2 E Bj (ci -cj) f(yj) , i = I1, 2, . ,s, 

(11) qn+1 = qn +hin +h2EBi(1-ci)f(yi), 
i=1 

S 

in+I = 4n +h Bif(yi). 
i=l1 

Proof. Repeatedly apply Lemma 1 and use the fact that each embedded method, 
namely 
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C' 

C2 a2l 

c3 a3l a32 

Cr a., ar2 ... arr-I 

b1 b2 br-i br 

B, B2 * BrI Br 

is itself canonical. 0 

The only free parameters for a canonical explicit RKN method are there- 
fore Bi and ci . The form (1 1) of writing an explicit canonical RKN method 
enables us to prove the following propositions. The first proposition shows 
that a canonical explicit RKN method requires minimal possible storage of any 
method. 

Proposition 1. The explicit canonical RKN method ( 11) can be expressed as 

Yo = qn 

Yn =n , 

for i= 1, 2, ... s 

y =yi-I +h(ci-ci- )j_ I, whereco ?, 

ii = 'i1i + hBif(yi), 

qn+ =ys +h(l -cs)Ps, 
4n+ I = Ys - 

Proof. We can always write down the above method. We need to show that it 
computes the same (qn+ l qn+l) as (5): 

Y = 4n +h2_Bjf(y;) 

j=1 

Yi = qn + h (Ck -Ck- )Yk- 1 

k=1 
k-i 

= qn + h(ci - CO)4n + h2 Z(ck- Ckl ) )J Bjf(yj) 
k=1 j=1 

i-I 

= qn + hciqn + h2 Z(ci - cj)Bjf(yj) 
j=1 

i-I 
= qn + hciqn + h2E aijf(yj) 

j=1 
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S 

4n+l = 4n +hEBjf(yj), 
j=1 

s-i 

qn+l = qn + hc5sn + h2 asjf(yj) + h(1 -c5) 
j=1 

= n + hn + h2 (Bjcs-yBjc + ( 1- c)B1) 
j=1 

S 

= qn + h4n + h2 E bjf(y) E l 
j=1 

From Proposition 1, if either ci = ci-1 or Bi = 0, then the ith stage is 
redundant, and hence the following assertion. 

Proposition 2. A nonredundant explicit canonical RKN method has Bi : 0, 
i = 1 , 2, ... , s, and ci $ ci-I , i = 2 , 3, ... , s. 

Suris, in his paper [13], showed that an explicit RKN method is Liouville 
(i.e., volume preserving) if and only if its adjoint is equivalent to an explicit 
method. Canonical RKN methods form a subset of Liouville RKN methods. 
For example, explicit 2-stage RKN methods require cl = c2 or B2a2I + B2bj - 
Bjb2 to be Liouville. What this means is that if we choose cl so that it is 
equal to c2, then the method is Liouville but may or may not be canonical. 
The method 

I 0 

1 1 
4 4 

1 1 
2 2 

is Liouville but not canonical. The following results are found in [9]. 

Theorem 3. If a method is canonical, then its adjoint is canonical. 

Theorem 4. An explicit RKN method is canonical if and only if its adjoint is 
explicit. 

A corollary of Theorem 4 is 

Corollary 1. If an explicit RKN method is equal to its adjoint (symmetric), then 
it is canonical. 

Because the adjoint of an explicit canonical RKN method is explicit, it can 
be expressed entirely in terms of its coefficients Bi and ej. These are given by 
(6) as 

(12) ei=1-CS+,-i Bj=Bs+-j. 
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3. CONSTRUCTION OF CANONICAL RKN METHODS 

Order conditions for RKN methods are specified in [8] for q and q involving 
bi and Bi . To construct explicit canonical RKN methods, we need only satisfy 
the conditions involving Bi. This is because bi = Bj(1 - ci) for canonical 
methods, and according to [8, p. 268] the other order conditions, involving bi, 
are automatically satisfied. For an s-stage canonical RKN method we are left 
with the following conditions. The first-order condition is 

(13) EBi= 1. 

In addition to the first-order condition, the second-order conditions are 

(14) EBici= . 

The third-order conditions, in addition to the first- and second-order conditions, 
are 

(15a) EBic? - 

(I1 5b) E E Biaij = E E BjBj(ci - ci) =6- 
j<i 

Finally, the fourth-order conditions, in addition to first-, second-, and third- 
order conditions, are 

(I16a) E Bic3=- 

(I 6b) A' A Biciaij = AA BjBjci(ci - cj)=8' 
j<i 

(1 6c) Z Z Biaijc =Z Z BiBj(ci - cj)cj -24 

j<i 

The last of these turns out to be superfluous because we have 

E E BiBj(ci - cj)cj = -E E BiBjci(ci - cj) 
j<i j<i 

= E E BiBjci(ci -c j) - BiBjci(ci -cj) 
j<i 

= I8-(I * I- - I2 ) = 214 
if all the others are satisfied. 

There is no limit to the order attainable by a canonical explicit RKN method. 
By means of a Lie group analysis, Yoshida [ 1 5] gives a construction of a 3n-stage 
method of order 2n + 2 for any n. See also Forest and Ruth [4]. 

3.1. One-stage methods. There is a one-parameter family of canonical ex- 
plicit 1-stage RKN methods of order 1: cl is the free parameter, B1 = 1. 
Imposing the second-order condition gives a canonical 1-stage RKN method of 
order 2 with cl = 1 . This is equivalent to the Stormer, "leapfrog," or Verlet 
method commonly used for solving Newton's equations of motion occurring in 
molecular dynamics. 
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3.2. Two-stage methods. We have a two-parameter family of canonical explicit 
2-stage RKN methods of order 2, namely, 

Cl=2+a, C2= +, B1 B2I a f). 2 2 ~~~fl-a' fla 

A simple choice for a and 11 results in the method 

0 

1 1 

2 
1 1 
2 2 

This is another form of the Stdrmer-Verlet method. The only explicit 2-stage 
RKN of order 3 that is canonical has imaginary coefficients, which are difficult 
to work with. 

3.3. Three-stage methods. Imposing third-order conditions, except for (1 6b) 
and canonical conditions, we obtain a three-parameter family of explicit 3-stage 
Runge-Kutta-Nystrom methods with the coefficients 

1 1 1 
cl=, +a, C2= +fl, C3= 2+y, 

B +fly +ay B+afl 
(fl- a)(y - a), (fl- _a)(y -fl) 3 (y 'a)(y _ f) 

where a, ,8, and y are all distinct. Through (1 6b), the parameters a, ,t1, and 
y are constrained by the following nonlinear equation: 

(17) 1 + 24ay + 24(fl - a)(y - a)(y - fl) + 144afy(a + y - fl) = O. 

If y = a, that is, c1 = c3, then from equations (14) and (15) we get 

(18) B. +B3= 2, B2 = 2 
C2 - C1 ~C2 -C1 

With this, the order condition (1 6b) reduces to 

(19) ( I-cl)(BI-B3) = 6 

Combining ( 18) and ( 19), we solve for the coefficients to obtain a two-parameter 
family of 3-stage RKN methods. The coefficients are 

C1 =+a, C2= + fi C3= +a, 

fl I a __ 

Be= 2(f)-a) 12a' B2=- _a) 2f2(-a) 12a 

where a $ fi and a $ 0 . Condition (1 6a) constrains the parameters a and fl 
by ' + afl = 0 and makes the method of order 3. 
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For a symmetric canonical explicit 3-stage RKN method (that is, an RKN 
method which is equal to its adjoint), it is sufficient to impose in addition to (17) 
only two conditions, namely, a = -y and 11 = 0. Solving for the coefficients, 
we have 

1 1 1 
Cl - Y, C2= C3= + Y' 

B =, 1 B2 = 1- B3 24y2 1~~2y2 2y 
where y is a zero of p(x) = 48x3 - 24X2 + 1. The only real zero of this 
polynomial is 1 (2 - XY - iYT6) -0.1756035959798288. It is easily verified 
from (1 6a), (1 6b), and (1 6c) that this is a symmetric canonical 3-stage RKN 
method of order four (we use the acronym SYRKN for this method). This 3- 
stage fourth-order method was apparently [15] first discovered by E. Forest and 
first published by Forest and Ruth [4]. 

4. PARTITIONED RK METHODS 

Consider a separable Hamiltonian system 

(20) O~~~~aT a DV 
(20) q = ,- = G(p), p =- = F(q). 

In what follows, we give an overview of partitioned Runge-Kutta (pRK) meth- 
ods for (20), proposed by Sanz-Serna [12], an approach which is actually a 
generalization of a 3-stage RK method obtained by Ruth [11] using generating 
functions via Hamilton-Jacobi equations. Sanz-Serna [12] considered 3-stage, 
and Qin and Zhang [10] considered 4-stage, pRK methods of order four. Here, 
we provide results concerning this class of methods. 

Definition 1 (Sanz-Serna [12]). An s-stage partitioned RK method is 

Y1 = qn + h aijG(Zj), Zi =Pn + h AijF(Yj), 

(21) 
qn+l = qn + h biG(Zi), Pn+ =Pn + h ZBiF(Yi). 

i i 

Note that this formalism includes those pRK methods that use an unequal 
number of G and F evaluations to take one step; it is only necessary to insert 
appropriate dummy stages. A pRK method is said to be explicit if aij = 0 for 
j > i and A i = 0 for j > i. It is true that there are methods equivalent to 
explicit methods which do not satisfy this. However, for simplicity we shall 
restrict the term "explicit" to methods of this form. The Butcher array for a 
partitioned RK method is 

a A 

b B 

Sanz-Serna in his paper [12] showed that method (21) is canonical if 

22)4 Bjaj + b Ai -R Bj = 0, I < i, i < S. 
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As pointed out in [12], if we define q(7) = p(-l) and pT() = q(-1), these 
satisfy a Hamiltonian system with Hamiltonian H(#W, T) = H(T, #). If we 
apply a one-step method to this transformed system, we get equations for 4n+1 
and P-n+I in terms of in and j . For these numerically determined values we 
could then undo the transformation by the substitutions qn+1 " n, n+ -n 

"n - Pn+i IY -n qn+ I, and H(i, Th) -* H(T, 4). It turns out that qn+I and 
Pn+i are given in terms of qn and Pn by a pRK method with coefficients 

dij= Bs+,-j- As+,-is+,-j by =Bs+I- 

Aij = a5is - - Bj =bs+ -i 

We call this the G-adjoint method. A G-symmetric method is one which is 
equal to its G-adjoint. It satisfies conditions which reduce to 

aij = b - As+ -i ,s+-i 1i, j < s. 
Aij = By - as+,_is+ij, 

The justification for a G-symmetric method is that if a problem has two equiv- 
alent formulations, then it seems desirable that a method applied to both for- 
mulations should yield equivalent solutions. 

If we impose canonical conditions (22) on an explicit pRK method, we have 

(23) Biaij = Bibj for ] < i, biAij = biBj for j < i, 1 < i < s. 

As with RKN methods, we cannot conclude that aij = bj, nor that Aij = Bj, 
but we can prove that the method is equivalent to one with this choice of 
coefficients. Such a choice is mentioned in [12]. 

Lemma 2. Let 

a A 

b B 

be an explicit canonical (r + 1)-stage pRK method. This is equivalent to 

all air 0 All Air 0 

ari arr 0 A . Arr 0 

_i ... br bnr+i B1 ... Br 0 
b I br br+i B1 ... Br Br+i 

Proof. It is enough to show that 

br+iG n+ h Ar+l,jFj =br+iG (Pnf+h?I BjFjY 
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and 

Br+lF (n +h ar+lij) ( =Br+IF (n+h~bG) 

From (23) we know that 

either br+i = 0 or Ar+l,j = B, j < r+ , 

and 
either Br+i = 0 or ar+l,j = bj, j < r+ 1. E 

Theorem 5. An explicit canonical pRK method 

a A 

b B 

is equivalent to 

bi ~~~~~~~0 

b1 b2 B1 0 

b1 b2 b3 B1 B2 0 

b1 b2 bs- 1 bs B1 B2 Bs- 1 0 

b1 b2 bs- 1 bs B1 B2 Bs- 1 Bs 

Proof. Repeatedly apply Lemma 2. E 

Without loss of generality, the algorithm for an explicit canonical pRK 
method can be written as 

Yo = qn, 

Z1 =Pn, 
for i = 1, 2, ... s 

Yi = Yi- 1 + hbiG(Zi), 

Zj+j = Zi + hBiF(Yi),5 

qn+l = Ys, 

Pn+l = Zs+I 

Note that this algorithm requires minimal possible storage. 
There is an obvious correspondence between this and the algorithm of Propo- 

sition 1. Every explicit canonical r-stage RKN method comes from an explicit 
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canonical (r + 1)-stage pRK method with Bi the same for i = 1, 2, ... , r and 
Br+i =0,andwith bi=ci-ci-I for i= 1, 2, ..., r, r+1,where co=0 and 
cr+1 = 1. (If cr = 1 , then the (r+ 1 )st stage is not needed.) We can characterize 
either an explicit RKN or an explicit pRK method in terms of parameters 

b: b, b2 bs 
B: B1 B2 *.. B, 

rather than the Butcher tableau. The G-adjoint of the explicit pRK method 
above has parameters 

b: Bs Bs-, *v B1 
B: bs bs1 ... b . 

The adjoint has parameters 

b: O bs b1 ...b 

B: Bs Bs- I B1 0. 

For the special case T(p) = IpTM-lp we have available the explicit RKN 
order conditions in terms of ci and B1, where ci = E= I bi if we assume that 
Zy=1 b1 = 1 (which is needed for consistency). 

Sanz-Serna [12] has suggested a concatenation of a G-symmetric 3-stage pRK 
method of order 3, 

b: 0.268330 -0.187992 0.919662 
B: 0.919662 -0.187992 0.268330, 

with its adjoint method to get a method of order 4 (we give it the acronym 
SYPRK 1): 

b: 0.134165 -0.093996 0.459831 0.459831 -0.093996 0.134165 
B: 0.459831 -0.093996 0.268330 -0.093996 0.459831 0. 

(These coefficients are approximate.) We suggest another method which is a 
concatenation of a method obtained by Ruth [11], namely, 

b- 7 
3 1 

* 24 4 24 
B: 2 2 1, 3 -3 

and its adjoint. The result of this concatenation is a method of order 4 (acronym: 
SYPRK2): 

b- 7 3 _1 1 3 7 48 8 48 48 8 48 
B: 1 1 1 -i 0 3 3 3 3 

5. NUMERICAL EXPERIMENTS 

For illustrative purposes, we consider two well-known Hamiltonians, the 
Henon-Heiles and a Kepler Hamiltonian. The experiments considered are not 
exhaustive and do not erase all doubts about the advantages of canonical over 
noncanonical schemes. More work needs to be done. For these experiments we 
consider also a noncanonical RKN of order four (acronym: NCRKN) obtained 
from [8, p. 262]. 
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5.1. Henon-Heiles Hamiltonian. In the process of investigating the existence 
of a third isolating integral of galactic motion in celestial mechanics, Hdnon 
and Heiles [7] approximated the Hamiltonian, and hence the total energy, by 

H = I 
(p2 +P2) + I(q 2 + q 2+ 2q 2q2 - 2q3) 

H6non and Heiles found that a third integral exists only at low energy. For 
energies higher than 8 , the system exhibits a chaotic behavior. The reason for 
considering it here is numerical and has nothing to do with theoretical questions. 
Hdnon and Heiles [7] in their experiments considered the intersections of the 
trajectory with the plane ql = 0. They plotted the values of q2 and P2 at 
these intersections in the (q2, p2)-plane. We shall do likewise, in addition to 
the quantities computed by Sanz-Serna [12]. 

Similar to [3], we choose (q,, q2, P1 P2) = (0.12, 0.12, 0.12, 0.12), giving 
an energy of 0.029952. The solution is computed for 1, 200, 000 time steps, 
with the time step being I6. Figure 1 depicts the Poincard sections of the 

Solution using SYPRKI Solution using SYPRK2 

0.2 - i' "' 0.2 - 

-0.2 _ -0.2' 

-0.2 0 0.2 -0.2 0 0.2 

q2 

Solution using NCRKN Solution using SYRKN 

0.2 - ~0.2 

41~~~~~0 

-0.2 -0.2 

-0.2 0 0.2 -0.2 0 0.2 

FIGURE 1. Two-dimensional surface plot for the Henon- 
Heiles problem using canonical and noncanonical meth- 
ods (H = 0.029952) 



452 DANIEL OKUNBOR AND R. D. SKEEL 

0.045 Energy using SYPRKI 0.045 Energy using SYPR 

0.04 . 0.04 

;>0.035 - . 0.035 

? 0.03 _ ., 0 .03 

0.025 0.025 - 

0.02 0.02 
0 0.5 1 1.5 2 0 0.5 1 1.5 2 

time x105 x105 

0.045 Energy using NCRKN 0045 Energy using SYRKN 

0.04 0.04 

0.035 0.035 

0.03 0.03 

0.025 0.025 . .. X 

0.02 0.02 
0 0.5 1 1.5 2 0 0.5 1 1.5 2 

x105 x105 

FIGURE 2. Energy plots for the Henon-Heiles prob- 
lem using canonical and noncanonical methods (H = 
0.029952) 

(q2, p2)-plane, using SYPRK1, SYPRK2, SYRKN, and NCRKN. As expected, 
the noncanonical scheme gives solution points which lie on the curves for some 
time and gradually drift away from the two submanifolds, displaying, perhaps, 
the noncanonical effects, a phenomenon common with such methods [11]. On 
the other hand, the solution points computed by all the canonical schemes lie 
on the two submanifolds. It is hoped that this feature would remain so for an 
infinite number of time steps. Figure 2 represents the energy behavior of all the 
schemes. This clearly shows the significance of canonical schemes for long-time 
computations. 

We also solve the problem choosing 

(q1, q2, PI, P2) = (0, 0.2, 0.4483395, 0), 
where Pi was computed so that H = 0.117835. The number of time steps is 
5,000 with h = 0.5. Figure 3 shows the trajectories on the (q1, q2)-plane using 
all the methods. 
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FIGURE 3l Trajectories for the Henon Heiles problem 
using canonical and noncanonical methods (H = 0.117835) 

5.3. Kepler's problem. The motion of two bodies under mutual gravitational 
attraction is governed by the Hamiltonian 

7 1 1 2 2\ a__ __ 

2 (Jtf2 (qI+ q2)'2 

where a is a constant involving the gravitational constant [5, pp. 132, 133], 
the masses of the bodies, and units of measurement. Different choices of 
initial conditions lead to different solution orbits. For this problem, we use 

(q1 , q2, PI, P2) = (0.75, 0, 0, a ) as initial conditions and I for a . The 
solution orbit is an ellipse with low eccentricity of 0.25 and a focus at the ori- 
gin. The solution is periodic with period T = 8. The plots of the global error 
(i.e., I1q(tn) - qn11/11q(tn)II) versus time, using SYPRK1, SYPRK2, NCRKN, 
and SYRKN with scaled stepsize (i.e., the actual stepsize divided by the num- 
ber of stages of a method) of 4 are shown in Figure 4 (see next page). The 
solution was computed for 100 time periods. It is remarkable to see from the 
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FIGURE 4. Error analysis of canonical and noncanonical 
schemes (Kepler's problem) 

figure that, while canonical methods exhibit linear growth in global error, the 
noncanonical method gave an exponential growth. This again shows the ad- 
vantage of canonical numerical mappings over noncanonical ones for long-time 
computation. 
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